Qualitative relationships illustrate how changing one property (e.g., moving velocity) affects another (e.g., kinetic energy) and constitutes a considerable portion of textual knowledge. Current approaches use either semantic parsers to transform natural language inputs into logical expressions or a "black-box" model to solve them in one step. The former has a limited application range, while the latter lacks interpretability. In this work, we categorize qualitative reasoning tasks into two types: prediction and comparison. In particular, we adopt neural network modules trained in an end-to-end manner to simulate the two reasoning processes. Experiments on two qualitative reasoning question answering datasets, QuaRTz and QuaRel, show our methods' effectiveness and generalization capability, and the intermediate outputs provided by the modules make the reasoning process interpretable.


翻译:定性关系说明一个属性的变化(如移动速度)如何影响另一个属性(如动能),并构成文本知识的相当一部分。当前的方法要么使用语义分析器将自然语言输入转换成逻辑表达式,要么用“黑箱”模型一步解决。前者的应用范围有限,而后者缺乏可解释性。在这项工作中,我们将定性推理任务分为两类:预测和比较。特别是,我们采用了经过培训的神经网络模块,以模拟两个推理过程。关于两个质量推理问题回答数据集的实验,QuaRTz 和 QuaRel,展示了我们的方法的有效性和通用能力,以及模块提供的中间输出使推理过程可以解释。

0
下载
关闭预览

相关内容

知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
111+阅读 · 2020年6月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Inductive Relation Prediction by Subgraph Reasoning
Arxiv
11+阅读 · 2020年2月12日
Interpretable Active Learning
Arxiv
3+阅读 · 2018年6月24日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员