Autonomous drone technology holds significant promise for enhancing search and rescue operations during evacuations by guiding humans toward safety and supporting broader emergency response efforts. However, their application in dynamic, real-time evacuation support remains limited. Existing models often overlook the psychological and emotional complexity of human behavior under extreme stress. In real-world fire scenarios, evacuees frequently deviate from designated safe routes due to panic and uncertainty. To address these challenges, this paper presents a multi-agent coordination framework in which autonomous Unmanned Aerial Vehicles (UAVs) assist human evacuees in real-time by locating, intercepting, and guiding them to safety under uncertain conditions. We model the problem as a Partially Observable Markov Decision Process (POMDP), where two heterogeneous UAV agents, a high-level rescuer (HLR) and a low-level rescuer (LLR), coordinate through shared observations and complementary capabilities. Human behavior is captured using an agent-based model grounded in empirical psychology, where panic dynamically affects decision-making and movement in response to environmental stimuli. The environment features stochastic fire spread, unknown evacuee locations, and limited visibility, requiring UAVs to plan over long horizons to search for humans and adapt in real-time. Our framework employs the Proximal Policy Optimization (PPO) algorithm with recurrent policies to enable robust decision-making in partially observable settings. Simulation results demonstrate that the UAV team can rapidly locate and intercept evacuees, significantly reducing the time required for them to reach safety compared to scenarios without UAV assistance.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员