Quadratic multiple knapsack problem (QMKP) is a combinatorial optimisation problem characterised by multiple weight capacity constraints and a profit function that combines linear and quadratic profits. We study a stochastic variant of this problem where profits are considered as random variables. This problem reflects complex resource allocation problems in real-world scenarios where randomness is inherent. We model this problem using chance constraints to capture the stochastic profits. We propose a hybrid approach for this problem, which combines an evolutionary algorithm (EA) with a local optimisation strategy inspired by multi-factorial optimisation (MFO). EAs are used for global search due to their effectiveness in handling large, complex solution spaces. In the hybrid approach, EA periodically passes interim solutions to the local optimiser for refinement. The local optimiser applies MFO principles, which are typically used in multi-tasking problems. The local optimiser models the local problem as a multi-tasking problem by constructing disjoint search spaces for each knapsack based on an input solution. For each item, its assignment across all knapsacks is considered to determine the preferred knapsack. Items are then divided into disjoint groups corresponding to each knapsack, allowing each knapsack to be treated as a separate optimisation task. This structure enables effective application of MFO-based local refinements. We consider two EAs for the problem, (1+1) EA and ($μ+λ$) EA. We conduct experiments to explore the effectiveness of these EAs on their own and also with the proposed local optimiser. Experimental results suggest that hybrid approaches, particularly those incorporating MFO, perform well on instances where chance constraints and capacity constraints are tight.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员