Causal graph discovery and causal effect estimation are two fundamental tasks in causal inference. While many methods have been developed for each task individually, statistical challenges arise when applying these methods jointly: estimating causal effects after running causal discovery algorithms on the same data leads to "double dipping," invalidating coverage guarantees of classical confidence intervals. To this end, we develop tools for valid post-causal-discovery inference. One key contribution is a randomized version of the greedy equivalence search (GES) algorithm, which permits a valid, finite-sample correction of classical confidence intervals. Across empirical studies, we show that a naive combination of causal discovery and subsequent inference algorithms typically leads to highly inflated miscoverage rates; at the same time, our noisy GES method provides reliable coverage control while achieving more accurate causal graph recovery than data splitting.


翻译:因果关系图的发现和因果关系估计是因果关系推断的两个基本任务。虽然已经为每个任务分别制定了许多方法,但在共同应用这些方法时会遇到统计上的挑战:在对同一数据进行因果关系发现算法后估计因果关系导致“双重稀释 ”, 使传统信任期的覆盖保障无效。 为此,我们开发了有效因果关系后发现推断的工具。 一个关键贡献是贪婪等值搜索算法的随机化版本,它允许对古典信任期进行有效、有限和抽样的更正。 在经验研究中,我们显示,因果发现和随后推断算法的天真结合通常会导致高度膨胀的覆盖率; 同时,我们噪音的GES方法提供了可靠的覆盖控制,同时实现比数据分离更准确的因果图形恢复。

0
下载
关闭预览

相关内容

专知会员服务
54+阅读 · 2021年6月30日
因果图,Causal Graphs,52页ppt
专知会员服务
253+阅读 · 2020年4月19日
专知会员服务
162+阅读 · 2020年1月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年10月1日
A Survey of Deep Learning for Scientific Discovery
Arxiv
29+阅读 · 2020年3月26日
VIP会员
相关VIP内容
专知会员服务
54+阅读 · 2021年6月30日
因果图,Causal Graphs,52页ppt
专知会员服务
253+阅读 · 2020年4月19日
专知会员服务
162+阅读 · 2020年1月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员