We prove the bivariate Cayley-Hamilton theorem, a powerful generalization of the classical Cayley-Hamilton theorem. The bivariate Cayley-Hamilton theorem has three direct corollaries that are usually proved independently: The classical Cayley-Hamilton theorem, the Girard-Newton identities, and the fact that the determinant and every coefficient of the characteristic polynomial has polynomially sized algebraic branching programs (ABPs) over arbitrary commutative rings. This last fact could so far only be obtained from separate constructions, and now we get it as a direct consequence of this much more general statement. The statement of the bivariate Cayley-Hamilton theorem involves the gradient of the coefficient of the characteristic polynomial, which is a generalization of the adjugate matrix. Analyzing this gradient, we obtain another new ABP for the determinant and every coefficient of the characteristic polynomial. This ABP has one third the size and half the width compared to the current record-holder ABP constructed by Mahajan-Vinay in 1997. This is the first improvement on this problem for 28 years. Our ABP is built around algebraic identities involving the first order partial derivatives of the coefficients of the characteristic polynomial, and does not use the ad-hoc combinatorial concept of clow sequences. This answers the 26-year-old open question by Mahajan-Vinay from 1999 about the necessity of clow sequences. We prove all results in a combinatorial way that on a first sight looks similar to Mahajan-Vinay, but it is closer to Straubing's and Zeilberger's constructions.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 11月26日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员