Eliciting knowledge from pre-trained language models via prompt-based learning has shown great potential in many natural language processing tasks. Whereas, the applications for more complex tasks such as event extraction are less studied since the design of prompt is not straightforward for the structured event containing various triggers and arguments. % Meanwhile, current conditional generation methods employ large encoder-decoder models, which are costly to train and serve. In this paper, we present a novel prompt-based approach, which elicits both the independent and joint knowledge about different events for event argument extraction. The experimental results on the benchmark ACE2005 dataset show the great advantages of our proposed approach. In particular, our approach is superior to the recent advanced methods in both fully-supervised and low-resource scenarios.


翻译:通过速成学习,从受过训练的语言模型中获取知识,这在许多自然语言处理任务中显示出巨大的潜力。虽然对事件提取等更复杂任务的应用研究较少,因为对包含各种触发因素和论据的结构化事件而言,快速设计并非直截了当。% 同时,目前的有条件发电方法采用大型编码器解码器模型,这些模型对培训和服务来说成本很高。在本文件中,我们提出了一个新的快速方法,它既能吸引独立和共同了解不同事件,又能吸引事件论证。关于ACE2005数据集基准的实验结果显示了我们拟议方法的巨大优势。特别是,我们的方法优于在完全监督下和低资源情景下的最新先进方法。

0
下载
关闭预览

相关内容

通过学习、实践或探索所获得的认识、判断或技能。
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
167+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
10+阅读 · 2017年7月4日
VIP会员
相关资讯
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员