State-of-the-art neural network language models (NNLMs) represented by long short term memory recurrent neural networks (LSTM-RNNs) and Transformers are becoming highly complex. They are prone to overfitting and poor generalization when given limited training data. To this end, an overarching full Bayesian learning framework encompassing three methods is proposed in this paper to account for the underlying uncertainty in LSTM-RNN and Transformer LMs. The uncertainty over their model parameters, choice of neural activations and hidden output representations are modeled using Bayesian, Gaussian Process and variational LSTM-RNN or Transformer LMs respectively. Efficient inference approaches were used to automatically select the optimal network internal components to be Bayesian learned using neural architecture search. A minimal number of Monte Carlo parameter samples as low as one was also used. These allow the computational costs incurred in Bayesian NNLM training and evaluation to be minimized. Experiments are conducted on two tasks: AMI meeting transcription and Oxford-BBC LipReading Sentences 2 (LRS2) overlapped speech recognition using state-of-the-art LF-MMI trained factored TDNN systems featuring data augmentation, speaker adaptation and audio-visual multi-channel beamforming for overlapped speech. Consistent performance improvements over the baseline LSTM-RNN and Transformer LMs with point estimated model parameters and drop-out regularization were obtained across both tasks in terms of perplexity and word error rate (WER). In particular, on the LRS2 data, statistically significant WER reductions up to 1.3% and 1.2% absolute (12.1% and 11.3% relative) were obtained over the baseline LSTM-RNN and Transformer LMs respectively after model combination between Bayesian NNLMs and their respective baselines.


翻译:由长期内存中枢神经网络(LSTM-RNNN)和变异器代表的状态神经网络语言模型(NNLLM)正在变得高度复杂。当给出有限的培训数据时,这些模型很容易被过度装配和不易概括。为此,本文件提出了一个包含三种方法的全巴伊萨学习总框架,以说明LSTM-RNNN和变异器LMLM的内在不确定性。这些模型参数的不确定性、神经激活的选择和隐藏输出表示的不确定性,分别使用Bayesian、Gausian进程和变异LSTM-RNNNNNNNNM 和变异性LMS的常规值参数参数(LRS2)和变异性LNBCLMLMLMLMLMLIMLMLMLMLMLMLMLMLMLMLMLMLMLMLMLMLMLMLMLMLMLMLMLMLMLMLMLMLMLMLMLMLMLMLMLLLMLMLLLMLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL

0
下载
关闭预览

相关内容

专知会员服务
61+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
167+阅读 · 2020年3月18日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
23+阅读 · 2022年2月24日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员