We present an adjoint-based optimization method to invert for stress and frictional parameters used in earthquake modeling. The forward problem is linear elastodynamics with nonlinear rate-and-state frictional faults. The misfit functional quantifies the difference between simulated and measured particle displacements or velocities at receiver locations. The misfit may include windowing or filtering operators. We derive the corresponding adjoint problem, which is linear elasticity with linearized rate-and-state friction with time-dependent coefficients derived from the forward solution. The gradient of the misfit is efficiently computed by convolving forward and adjoint variables on the fault. The method thus extends the framework of full-waveform inversion to include frictional faults with rate-and-state friction. In addition, we present a space-time dual-consistent discretization of a dynamic rupture problem with a rough fault in antiplane shear, using high-order accurate summation-by-parts finite differences in combination with explicit Runge--Kutta time integration. The dual consistency of the discretization ensures that the discrete adjoint-based gradient is the exact gradient of the discrete misfit functional as well as a consistent approximation of the continuous gradient. Our theoretical results are corroborated by inversions with synthetic data. We anticipate that adjoint-based inversion of seismic and/or geodetic data will be a powerful tool for studying earthquake source processes; it can also be used to interpret laboratory friction experiments.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年12月12日
VIP会员
相关资讯
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员