Let $(M,g)$ be a Riemannian manifold. If $\mu$ is a probability measure on $M$ given by a continuous density function, one would expect the Fr\'{e}chet means of data-samples $Q=(q_1,q_2,\dots, q_N)\in M^N$, with respect to $\mu$, to behave ``generically''; e.g. the probability that the Fr\'{e}chet mean set $\mbox{FM}(Q)$ has any elements that lie in a given, positive-codimension submanifold, should be zero for any $N\geq 1$. Even this simplest instance of genericity does not seem to have been proven in the literature, except in special cases. The main result of this paper is a general, and stronger, genericity property: given i.i.d. absolutely continuous $M$-valued random variables $X_1,\dots, X_N$, and a subset $A\subset M$ of volume-measure zero, $\mbox{Pr}\left\{\mbox{FM}(\{X_1,\dots,X_N\})\subset M\backslash A\right\}=1.$ We also establish a companion theorem for equivariant Fr\'{e}chet means, defined when $(M,g)$ arises as the quotient of a Riemannian manifold $(\widetilde{M},\tilde{g})$ by a free, isometric action of a finite group. The equivariant Fr\'{e}chet means lie in $\widetilde{M}$, but, as we show, project down to the ordinary Fr\'{e}chet sample means, and enjoy a similar genericity property. Both these theorems are proven as consequences of a purely geometric (and quite general) result that constitutes the core mathematics in this paper: If $A\subset M$ has volume zero in $M$ , then the set $\{Q\in M^N : \mbox{FM}(Q) \cap A\neq\emptyset\}$ has volume zero in $M^N$. We conclude the paper with an application to partial scaling-rotation means, a type of mean for symmetric positive-definite matrices.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年11月8日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员