Understanding how population age structure shapes COVID-19 burden is crucial for pandemic preparedness, yet common summary measures such as median age ignore key distributional features like skewness, bimodality, and the proportional weight of high-risk cohorts. We extend the PoPStat framework, originally devised to link entire population pyramids with cause-specific mortality by applying it to COVID-19. Using 2019 United Nations World Population Prospects age-sex distributions together with cumulative cases and deaths per million recorded up to 5 May 2023 by Our World in Data, we calculate PoPDivergence (the Kullback-Leibler divergence from an optimised reference pyramid) for 180+ countries and derive PoPStat-COVID19 as the Pearson correlation between that divergence and log-transformed incidence or mortality. Optimisation selects Malta's old-skewed pyramid as the reference, yielding strong negative correlations for cases (r=-0.86, p<0.001, R^2=0.74) and deaths (r=-0.82, p<0.001, R^2=0.67). Sensitivity tests across twenty additional, similarly old-skewed references confirm that these associations are robust to reference choice. Benchmarking against eight standard indicators like gross domestic product per capita, Gini index, Human Development Index, life expectancy at birth, median age, population density, Socio-demographic Index, and Universal Health Coverage Index shows that PoPStat-COVID19 surpasses GDP per capita, median age, population density, and several other traditional measures, and outperforms every comparator for fatality burden. PoPStat-COVID19 therefore provides a concise, distribution-aware scalar for quantifying demographic vulnerability to COVID-19.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Pyramid is a small, fast, down-to-earth Python web application development framework.
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
74+阅读 · 2016年11月26日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关VIP内容
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
74+阅读 · 2016年11月26日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员