Despite the rising prevalence of neural sequence models, recent empirical evidences suggest their deficiency in compositional generalization. One of the current de-facto solutions to this problem is compositional data augmentation, aiming to incur additional compositional inductive bias. Nonetheless, the improvement offered by existing handcrafted augmentation strategies is limited when successful systematic generalization of neural sequence models requires multi-grained compositional bias (i.e., not limited to either lexical or structural biases only) or differentiation of training sequences in an imbalanced difficulty distribution. To address the two challenges, we first propose a novel compositional augmentation strategy dubbed \textbf{Span} \textbf{Sub}stitution (SpanSub) that enables multi-grained composition of substantial substructures in the whole training set. Over and above that, we introduce the \textbf{L}earning \textbf{to} \textbf{S}ubstitute \textbf{S}pan (L2S2) framework which empowers the learning of span substitution probabilities in SpanSub in an end-to-end manner by maximizing the loss of neural sequence models, so as to outweigh those challenging compositions with elusive concepts and novel surroundings. Our empirical results on three standard compositional generalization benchmarks, including SCAN, COGS and GeoQuery (with an improvement of at most 66.5\%, 10.3\%, 1.2\%, respectively), demonstrate the superiority of SpanSub, %the learning framework L2S2 and their combination.


翻译:暂无翻译

0
下载
关闭预览

相关内容

多标签学习的新趋势(2020 Survey)
专知会员服务
44+阅读 · 2020年12月6日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Meta-Learning to Cluster
Arxiv
18+阅读 · 2019年10月30日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员