The top-$k$-sum operator computes the sum of the largest $k$ components of a given vector. The Euclidean projection onto the top-$k$-sum constraint serves as a crucial subroutine in iterative methods to solve composite superquantile optimization problems. In this paper, we introduce a solver that implements two finite-termination algorithms to compute this projection. Both algorithms have complexity $O(n)$ when applied to a sorted $n$-dimensional input vector, where the absorbed constant is independent of $k$. This stands in contrast to the existing grid-search-inspired method that has $O(k(n-k))$ complexity. The improvement is significant when $k$ is linearly dependent on $n$, which frequently encountered in practical superquantile optimization applications. In instances where the input vector is unsorted, an additional cost is incurred to (partially) sort the vector. To reduce this cost, we further derive a rigorous procedure that leverages approximate sorting to compute the projection, which is particularly useful when solving a sequence of similar projection problems. Numerical results show that our methods solve problems of scale $n=10^7$ and $k=10^4$ within $0.05$ seconds, whereas the existing grid-search-based method and the Gurobi QP solver can take minutes to hours.


翻译:暂无翻译

0
下载
关闭预览

相关内容

RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
可解释AI(XAI)工具集—DrWhy
专知
25+阅读 · 2019年6月4日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
可解释AI(XAI)工具集—DrWhy
专知
25+阅读 · 2019年6月4日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员