A subset of points in a metric space is said to resolve it if each point in the space is uniquely characterized by its distance to each point in the subset. In particular, resolving sets can be used to represent points in abstract metric spaces as Euclidean vectors. Importantly, due to the triangle inequality, points close by in the space are represented as vectors with similar coordinates, which may find applications in classification problems of symbolic objects under suitably chosen metrics. In this manuscript, we address the resolvability of Jaccard spaces, i.e., metric spaces of the form $(2^X,\text{Jac})$, where $2^X$ is the power set of a finite set $X$, and $\text{Jac}$ is the Jaccard distance between subsets of $X$. Specifically, for different $a,b\in 2^X$, $\text{Jac}(a,b)=|a\Delta b|/|a\cup b|$, where $|\cdot|$ denotes size (i.e., cardinality) and $\Delta$ denotes the symmetric difference of sets. We combine probabilistic and linear algebra arguments to construct highly likely but nearly optimal (i.e., of minimal size) resolving sets of $(2^X,\text{Jac})$. In particular, we show that the metric dimension of $(2^X,\text{Jac})$, i.e., the minimum size of a resolving set of this space, is $\Theta(|X|/\ln|X|)$. In addition, we show that a much smaller subset of $2^X$ suffices to resolve, with high probability, all different pairs of subsets of $X$ of cardinality at most $\sqrt{|X|}/\ln|X|$, up to a factor.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
13+阅读 · 2021年5月25日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员