The scene perception, understanding, and simulation are fundamental techniques for embodied-AI agents, while existing solutions are still prone to segmentation deficiency, dynamic objects' interference, sensor data sparsity, and view-limitation problems. This paper proposes a novel framework, named SPORTS, for holistic scene understanding via tightly integrating Video Panoptic Segmentation (VPS), Visual Odometry (VO), and Scene Rendering (SR) tasks into an iterative and unified perspective. Firstly, VPS designs an adaptive attention-based geometric fusion mechanism to align cross-frame features via enrolling the pose, depth, and optical flow modality, which automatically adjust feature maps for different decoding stages. And a post-matching strategy is integrated to improve identities tracking. In VO, panoptic segmentation results from VPS are combined with the optical flow map to improve the confidence estimation of dynamic objects, which enhances the accuracy of the camera pose estimation and completeness of the depth map generation via the learning-based paradigm. Furthermore, the point-based rendering of SR is beneficial from VO, transforming sparse point clouds into neural fields to synthesize high-fidelity RGB views and twin panoptic views. Extensive experiments on three public datasets demonstrate that our attention-based feature fusion outperforms most existing state-of-the-art methods on the odometry, tracking, segmentation, and novel view synthesis tasks.
翻译:暂无翻译