Deep neural networks (DNNs) are vulnerable to adversarial examples, in which DNNs are misled to false outputs due to inputs containing imperceptible perturbations. Adversarial training, a reliable and effective method of defense, may significantly reduce the vulnerability of neural networks and becomes the de facto standard for robust learning. While many recent works practice the data-centric philosophy, such as how to generate better adversarial examples or use generative models to produce additional training data, we look back to the models themselves and revisit the adversarial robustness from the perspective of deep feature distribution as an insightful complementarity. In this paper, we propose Branch Orthogonality adveRsarial Training (BORT) to obtain state-of-the-art performance with solely the original dataset for adversarial training. To practice our design idea of integrating multiple orthogonal solution spaces, we leverage a simple and straightforward multi-branch neural network that eclipses adversarial attacks with no increase in inference time. We heuristically propose a corresponding loss function, branch-orthogonal loss, to make each solution space of the multi-branch model orthogonal. We evaluate our approach on CIFAR-10, CIFAR-100, and SVHN against \ell_{\infty} norm-bounded perturbations of size \epsilon = 8/255, respectively. Exhaustive experiments are conducted to show that our method goes beyond all state-of-the-art methods without any tricks. Compared to all methods that do not use additional data for training, our models achieve 67.3% and 41.5% robust accuracy on CIFAR-10 and CIFAR-100 (improving upon the state-of-the-art by +7.23% and +9.07%). We also outperform methods using a training set with a far larger scale than ours. All our models and codes are available online at https://github.com/huangd1999/BORT.


翻译:深神经网络(DNNs)很容易受到对抗性的例子的影响,在这些例子中,DNNs被误导为虚假产出,因为含有无法察觉的扰动。Aversarial 培训是一种可靠和有效的防御方法,可以大大降低神经网络的脆弱性,并成为强力学习的实际标准。虽然许多近期的作品都采用以数据为中心的理念,例如如何生成更好的对抗性范例或使用基因化模型来生成更多的培训数据,但我们回过头来看模型本身,并从深度特征分布的角度重新审视对DNNNNN的强性,作为深刻的互补。在本文件中,我们建议Orthogoality addarial 培训(BORT)部门Orthoality addality advicational advisual advisualational adtraveldal etal-egal-troal-modeal-deal-developal-ral-ral-ral-ral-ral-ral-ral-ral-ral-ral-ral-ral-ral-l-l-ral-rass-ral-l-ral-ral-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l

0
下载
关闭预览

相关内容

专知会员服务
61+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
167+阅读 · 2020年3月18日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
19+阅读 · 2018年3月28日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员