Gun violence is a major problem in contemporary American society. However, relatively little is known about the effects of firearm injuries on survivors and their family members and how these effects vary across subpopulations. To study these questions and, more generally, to address a gap in the causal inference literature, we present a framework for the study of effect modification or heterogeneous treatment effects in difference-in-differences designs. We implement a new matching technique, which combines profile matching and risk set matching, to (i) preserve the time alignment of covariates, exposure, and outcomes, avoiding pitfalls of other common approaches for difference-in-differences, and (ii) explicitly control biases due to imbalances in observed covariates in subgroups discovered from the data. Our case study shows significant and persistent effects of nonfatal firearm injuries on several health outcomes for those injured and on the mental health of their family members. Sensitivity analyses reveal that these results are moderately robust to unmeasured confounding bias. Finally, while the effects for those injured are modified largely by the severity of the injury and its documented intent, for families, effects are strongest for those whose relative's injury is documented as resulting from an assault, self-harm, or law enforcement intervention.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员