Linear real-valued computations over distributed datasets are common in many applications, most notably as part of machine learning inference. In particular, linear computations that are quantized, i.e., where the coefficients are restricted to a predetermined set of values (such as $\pm 1$), have gained increasing interest lately due to their role in efficient, robust, or private machine learning models. Given a dataset to store in a distributed system, we wish to encode it so that all such computations could be conducted by accessing a small number of servers, called the access parameter of the system. Doing so relieves the remaining servers to execute other tasks. Minimizing the access parameter gives rise to an access-redundancy tradeoff, where a smaller access parameter requires more redundancy in the system, and vice versa. In this paper, we study this tradeoff and provide several explicit low-access schemes for $\{\pm1\}$ quantized linear computations based on covering codes in a novel way. While the connection to covering codes has been observed in the past, our results strictly outperform the state-of-the-art for two-valued linear computations. We further show that the same storage scheme can be used to retrieve any linear combination with two distinct coefficients -- regardless of what those coefficients are -- with the same access parameter. This universality result is then extended to all possible quantizations with any number of values; while the storage remains identical, the access parameter increases according to a new additive-combinatorics property we call coefficient complexity. We then turn to study the coefficient complexity -- we characterize the complexity of small sets of coefficients, provide bounds, and identify coefficient sets having the highest and lowest complexity.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
17+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
13+阅读 · 2022年10月20日
A Survey on Edge Intelligence
Arxiv
52+阅读 · 2020年3月26日
VIP会员
相关VIP内容
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
相关基金
国家自然科学基金
17+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员