In this paper, we examine the impact of lexicalization on Question Answering over Linked Data (QALD). It is well known that one of the key challenges in interpreting natural language questions with respect to SPARQL lies in bridging the lexical gap, that is mapping the words in the query to the correct vocabulary elements. We argue in this paper that lexicalization, that is explicit knowledge about the potential interpretations of a word with respect to the given vocabulary, significantly eases the task and increases the performance of QA systems. Towards this goal, we present a compositional QA system that can leverage explicit lexical knowledge in a compositional manner to infer the meaning of a question in terms of a SPARQL query. We show that such a system, given lexical knowledge, has a performance well beyond current QA systems, achieving up to a $35.8\%$ increase in the micro $F_1$ score compared to the best QA system on QALD-9. This shows the importance and potential of including explicit lexical knowledge. In contrast, we show that LLMs have limited abilities to exploit lexical knowledge, with only marginal improvements compared to a version without lexical knowledge. This shows that LLMs have no ability to compositionally interpret a question on the basis of the meaning of its parts, a key feature of compositional approaches. Taken together, our work shows new avenues for QALD research, emphasizing the importance of lexicalization and compositionality.


翻译:暂无翻译

0
下载
关闭预览

相关内容

通过学习、实践或探索所获得的认识、判断或技能。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员