This paper critically audits the search endpoint of YouTube's Data API (v3), a common tool for academic research. Through systematic weekly searches over six months using eleven queries, we identify major limitations regarding completeness, representativeness, consistency, and bias. Our findings reveal substantial differences between ranking parameters like relevance and date in terms of video recall and precision, with relevance often retrieving numerous off-topic videos. We also observe severe temporal decay in video discoverability: the number of retrievable videos for a given period drops dramatically within just 20-60 days of publication, even though these videos remain on the platform. This potentially undermines research designs that rely on systematic data collection. Furthermore, search results lack consistency, with identical queries yielding different video sets over time, compromising replicability. A case study on the European Parliament elections highlights how these issues impact research outcomes. While the paper offers several mitigation strategies, it concludes that the API's search function, potentially prioritizing 'freshness' over comprehensive retrieval, is not adequate for robust academic research, especially concerning Digital Services Act requirements.
翻译:暂无翻译