Ranging from NVIDIA GPUs to AMD GPUs and Intel GPUs: Given the heterogeneity of available accelerator cards within current supercomputers, portability is a key aspect for modern HPC applications. In Octo-Tiger, we rely on Kokkos and its various execution spaces for portable compute kernels. In turn, we use HPX to coordinate kernel launches, CPU tasks, and communication. This combination allows us to have a fine interleaving between portable CPU/GPU computations and communication, enabling scalability on various supercomputers. However, for HPX and Kokkos to work together optimally, we need to be able to treat Kokkos kernels as HPX tasks. Otherwise, instead of integrating asynchronous Kokkos kernel launches into HPX's task graph, we would have to actively wait for them with fence commands, which wastes CPU time better spent otherwise. Using an integration layer called HPX-Kokkos, treating Kokkos kernels as tasks already works for some Kokkos execution spaces (like the CUDA one), but not for others (like the SYCL one). In this work, we started making Octo-Tiger and HPX itself compatible with SYCL. To do so, we introduce numerous software changes, most notably an HPX-SYCL integration. This integration allows us to treat SYCL events as HPX tasks, which in turn allows us to better integrate Kokkos by extending the support of HPX-Kokkos to also fully support Kokkos' SYCL execution space. We show two ways to implement this HPX-SYCL integration and test them using Octo-Tiger and its Kokkos kernels, on both an NVIDIA A100 and an AMD MI100. We find modest, yet noticeable, speedups by enabling this integration, even when just running simple single-node scenarios with Octo-Tiger where communication and CPU utilization are not yet an issue.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Integration:Integration, the VLSI Journal。 Explanation:集成,VLSI杂志。 Publisher:Elsevier。 SIT:http://dblp.uni-trier.de/db/journals/integration/
Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年6月21日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
10+阅读 · 2021年11月3日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关论文
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员