We consider the development of adaptive, instance-dependent algorithms for interactive decision making (bandits, reinforcement learning, and beyond) that, rather than only performing well in the worst case, adapt to favorable properties of real-world instances for improved performance. We aim for instance-optimality, a strong notion of adaptivity which asserts that, on any particular problem instance, the algorithm under consideration outperforms all consistent algorithms. Instance-optimality enjoys a rich asymptotic theory originating from the work of \citet{lai1985asymptotically,graves1997asymptotically}, but non-asymptotic guarantees have remained elusive outside of certain special cases. Even for problems as simple as tabular reinforcement learning, existing algorithms do not attain instance-optimal performance until the number of rounds of interaction is doubly exponential in the number of states. In this paper, we take the first step toward developing a non-asymptotic theory of instance-optimal decision making with general function approximation. We introduce a new complexity measure, the Allocation-Estimation Coefficient (AEC), and provide a new algorithm, $\mathsf{AE}^2$, which attains non-asymptotic instance-optimal performance at a rate controlled by the AEC. Our results recover the best known guarantees for well-studied problems such as finite-armed and linear bandits and, when specialized to tabular reinforcement learning, attain the first instance-optimal regret bounds with polynomial dependence on all problem parameters, improving over prior work exponentially. We complement these results with lower bounds that show that i) existing notions of statistical complexity are insufficient to derive non-asymptotic guarantees, and ii) under certain technical conditions, boundedness of the AEC is necessary to learn an instance-optimal allocation of decisions in finite time.


翻译:暂无翻译

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
专知会员服务
51+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
84+阅读 · 2022年7月16日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员