Token embeddings in multilingual BERT (m-BERT) contain both language and semantic information. We find that the representation of a language can be obtained by simply averaging the embeddings of the tokens of the language. Given this language representation, we control the output languages of multilingual BERT by manipulating the token embeddings, thus achieving unsupervised token translation. We further propose a computationally cheap but effective approach to improve the cross-lingual ability of m-BERT based on this observation.


翻译:在多语种 BERT (m-BERT) 中嵌入的调子包含语言和语义信息。 我们发现,一种语言的表述可以通过仅仅平均嵌入该语言的象征物来获得。 基于这种语言的表述,我们控制多语言的调控多语种 BERT 的输出语言,操纵代号嵌入,从而实现不受监督的代号翻译。 我们还根据这一观察,提出了一种计算成本低但有效的方法,以提高 m-BERT 的跨语种能力。

0
下载
关闭预览

相关内容

最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
4+阅读 · 2018年9月6日
VIP会员
相关资讯
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员