Fully homomorphic encryption allows the evaluation of arbitrary functions on encrypted data. It can be leveraged to secure outsourced and multiparty computation. TFHE is a fast torus-based fully homomorphic encryption scheme that allows both linear operations, as well as the evaluation of arbitrary non-linear functions. It currently provides the fastest bootstrapping operation performance of any other FHE scheme. Despite its fast performance, TFHE suffers from a considerably higher computational overhead for the evaluation of homomorphic circuits. Computations in the encrypted domain are orders of magnitude slower than their unencrypted equivalents. This bottleneck hinders the widespread adoption of (T)FHE for the protection of sensitive data. While state-of-the-art implementations focused on accelerating and outsourcing single operations, their scalability and practicality are constrained by high memory bandwidth costs. In order to overcome this, we propose an FPGA-based hardware accelerator for the evaluation of homomorphic circuits. Specifically, we design a functionally complete TFHE processor for FPGA hardware capable of processing instructions on the data completely on the FPGA. In order to achieve a higher throughput from our TFHE processor, we implement an improved programmable bootstrapping module which outperforms the current state-of-the-art by 240\% to 480\% more bootstrappings per second. Our efficient, compact, and scalable design lays the foundation for implementing complete FPGA-based TFHE processor architectures.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员