Deep neural networks are typically too computationally expensive to run in real-time on consumer-grade hardware and low-powered devices. In this paper, we investigate reducing the computational and memory requirements of neural networks through network pruning and quantisation. We examine their efficacy on large networks like AlexNet compared to recent compact architectures: ShuffleNet and MobileNet. Our results show that pruning and quantisation compresses these networks to less than half their original size and improves their efficiency, particularly on MobileNet with a 7x speedup. We also demonstrate that pruning, in addition to reducing the number of parameters in a network, can aid in the correction of overfitting.


翻译:深神经网络通常在计算上过于昂贵,无法实时运行消费级硬件和低功率设备。 在本文中,我们通过网络运行和量化调查减少神经网络的计算和内存要求。我们对照最近的紧凑结构(ShuffleNet 和 MobileNet ), 审视了亚历克斯Net 等大型网络的功效。我们的结果表明,运行和量化将这些网络压缩到不到其最初规模的一半,提高了其效率,特别是移动网络的效能,并加速了7x速度。我们还表明,除了减少网络参数的数量外,运行和量化还能帮助校正超装。

1
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
20+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
Arxiv
3+阅读 · 2018年8月17日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
20+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
Top
微信扫码咨询专知VIP会员