Large Language Model (LLM) inference workloads handled by global cloud providers can include both latency-sensitive and insensitive tasks, creating a diverse range of Service Level Agreement (SLA) requirements. Managing these mixed workloads is challenging due to the complexity of the inference stack, which includes multiple LLMs, hardware configurations, and geographic distributions. Current optimization strategies often silo these tasks to ensure that SLAs are met for latency-sensitive tasks, but this leads to significant under-utilization of expensive GPU resources despite the availability of spot and on-demand Virtual Machine (VM) provisioning. We propose SAGESERVE, a comprehensive LLM serving framework that employs adaptive control knobs at varying time scales, ensuring SLA compliance while maximizing the utilization of valuable GPU resources. Short-term optimizations include efficient request routing to data center regions, while long-term strategies involve scaling GPU VMs out/in and redeploying models to existing VMs to align with traffic patterns. These strategies are formulated as an optimization problem for resource allocation and solved using Integer Linear Programming (ILP). We perform empirical and simulation studies based on production workload traces with over 8M requests using four open-source models deployed across three regions. SAGESERVE achieves up to 25% savings in GPU-hours while maintaining tail latency and satisfying all SLOs, and it reduces the scaling overhead compared to baselines by up to 80%, confirming the effectiveness of our proposal. In terms of dollar cost, this can save cloud providers up to $2M over the course of a month.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员