In today's critical domains, the predominance of black-box machine learning models amplifies the demand for Explainable AI (XAI). The widely used SHAP values, while quantifying feature importance, are often too intricate and lack human-friendly explanations. Furthermore, counterfactual (CF) explanations present `what ifs' but leave users grappling with the 'why'. To bridge this gap, we introduce XAIstories. Leveraging Large Language Models, XAIstories provide narratives that shed light on AI predictions: SHAPstories do so based on SHAP explanations to explain a prediction score, while CFstories do so for CF explanations to explain a decision. Our results are striking: over 90% of the surveyed general audience finds the narrative generated by SHAPstories convincing. Data scientists primarily see the value of SHAPstories in communicating explanations to a general audience, with 92% of data scientists indicating that it will contribute to the ease and confidence of nonspecialists in understanding AI predictions. Additionally, 83% of data scientists indicate they are likely to use SHAPstories for this purpose. In image classification, CFstories are considered more or equally convincing as users own crafted stories by over 75% of lay user participants. CFstories also bring a tenfold speed gain in creating a narrative, and improves accuracy by over 20% compared to manually created narratives. The results thereby suggest that XAIstories may provide the missing link in truly explaining and understanding AI predictions.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
11+阅读 · 2018年4月8日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员