This paper introduces \textit{measurement trees}, a novel class of metrics designed to combine various constructs into an interpretable multi-level representation of a measurand. Unlike conventional metrics that yield single values, vectors, surfaces, or categories, measurement trees produce a hierarchical directed graph in which each node summarizes its children through user-defined aggregation methods. In response to recent calls to expand the scope of AI system evaluation, measurement trees enhance metric transparency and facilitate the integration of heterogeneous evidence, including, e.g., agentic, business, energy-efficiency, sociotechnical, or security signals. We present definitions and examples, demonstrate practical utility through a large-scale measurement exercise, and provide accompanying open-source Python code. By operationalizing a transparent approach to measurement of complex constructs, this work offers a principled foundation for broader and more interpretable AI evaluation.
翻译:暂无翻译