Despite the considerable potential of reinforcement learning (RL), robotics control tasks predominantly rely on imitation learning (IL) owing to its better sample efficiency. However, given the high cost of collecting extensive demonstrations, RL is still appealing if it can utilize limited imitation data for efficient autonomous self-improvement. Existing RL methods that utilize demonstrations either initialize the replay buffer with demonstrations and oversample them during RL training, which does not benefit from the generalization potential of modern IL methods, or pretrain the RL policy with IL on the demonstrations, which requires additional mechanisms to prevent catastrophic forgetting during RL fine-tuning. We propose imitation bootstrapped reinforcement learning (IBRL), a novel framework that first trains an IL policy on a limited number of demonstrations and then uses it to propose alternative actions for both online exploration and target value bootstrapping. IBRL achieves SoTA performance and sample efficiency on 7 challenging sparse reward continuous control tasks in simulation while learning directly from pixels. As a highlight of our method, IBRL achieves $6.4\times$ higher success rate than RLPD, a strong method that combines the idea of oversampling demonstrations with modern RL improvements, under the budget of 10 demos and 100K interactions in the challenging PickPlaceCan task in the Robomimic benchmark.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年1月15日
Arxiv
0+阅读 · 2024年1月12日
Arxiv
24+阅读 · 2022年2月4日
Arxiv
15+阅读 · 2020年2月5日
Arxiv
11+阅读 · 2018年5月21日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
0+阅读 · 2024年1月15日
Arxiv
0+阅读 · 2024年1月12日
Arxiv
24+阅读 · 2022年2月4日
Arxiv
15+阅读 · 2020年2月5日
Arxiv
11+阅读 · 2018年5月21日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员