In this work, we report what happens when two large language models respond to each other for many turns without any outside input in a multi-agent setup. The setup begins with a short seed sentence. After that, each model reads the other's output and generates a response. This continues for a fixed number of steps. We used Mistral Nemo Base 2407 and Llama 2 13B hf. We observed that most conversations start coherently but later fall into repetition. In many runs, a short phrase appears and repeats across turns. Once repetition begins, both models tend to produce similar output rather than introducing a new direction in the conversation. This leads to a loop where the same or similar text is produced repeatedly. We describe this behavior as a form of convergence. It occurs even though the models are large, trained separately, and not given any prompt instructions. To study this behavior, we apply lexical and embedding-based metrics to measure how far the conversation drifts from the initial seed and how similar the outputs of the two models becomes as the conversation progresses.


翻译:本研究中,我们报告了在多智能体设置下,两个大型语言模型在无外部输入的情况下相互响应多轮对话时发生的情况。该设置从一个简短的种子句子开始。随后,每个模型读取对方的输出并生成回复。这一过程持续固定的步数。我们使用了 Mistral Nemo Base 2407 和 Llama 2 13B hf 模型进行实验。我们观察到,大多数对话开始时具有连贯性,但随后陷入重复。在许多运行中,一个短句出现并在多轮对话中重复。一旦重复开始,两个模型倾向于产生相似的输出,而非引入对话的新方向。这导致一个循环,其中相同或相似的文本被反复生成。我们将这种行为描述为一种收敛形式。尽管模型规模庞大、分别训练且未提供任何提示指令,这种现象仍然发生。为研究此行为,我们应用了基于词汇和嵌入的度量方法,以量化对话偏离初始种子的程度,以及随着对话进行两个模型输出之间的相似性变化。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员