Due to the poor illumination and the difficulty in annotating, nighttime conditions pose a significant challenge for autonomous vehicle perception systems. Unsupervised domain adaptation (UDA) has been widely applied to semantic segmentation on such images to adapt models from normal conditions to target nighttime-condition domains. Self-training (ST) is a paradigm in UDA, where a momentum teacher is utilized for pseudo-label prediction, but a confirmation bias issue exists. Because the one-directional knowledge transfer from a single teacher is insufficient to adapt to a large domain shift. To mitigate this issue, we propose to alleviate domain gap by incrementally considering style influence and illumination change. Therefore, we introduce a one-stage Dual-Teacher Bi-directional Self-training (DTBS) framework for smooth knowledge transfer and feedback. Based on two teacher models, we present a novel pipeline to respectively decouple style and illumination shift. In addition, we propose a new Re-weight exponential moving average (EMA) to merge the knowledge of style and illumination factors, and provide feedback to the student model. In this way, our method can be embedded in other UDA methods to enhance their performance. For example, the Cityscapes to ACDC night task yielded 53.8 mIoU (\%), which corresponds to an improvement of +5\% over the previous state-of-the-art. The code is available at \url{https://github.com/hf618/DTBS}.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员