This paper demonstrates how OpenAI's ChatGPT can be used in a few-shot setting to convert natural language instructions into an executable robot action sequence. The paper proposes easy-to-customize input prompts for ChatGPT that meet common requirements in practical applications, such as easy integration with robot execution systems and applicability to various environments while minimizing the impact of ChatGPT's token limit. The prompts encourage ChatGPT to output a sequence of predefined robot actions, represent the operating environment in a formalized style, and infer the updated state of the operating environment. Experiments confirmed that the proposed prompts enable ChatGPT to act according to requirements in various environments, and users can adjust ChatGPT's output with natural language feedback for safe and robust operation. The proposed prompts and source code are open-source and publicly available at https://github.com/microsoft/ChatGPT-Robot-Manipulation-Prompts


翻译:本文展示了如何使用 OpenAI 的 ChatGPT,在 few-shot 设置下将自然语言指令转换为可执行的机器人动作序列。本文提出了易于定制的输入提示,满足实际应用中的通用需求,例如与机器人执行系统的轻松集成以及适用于各种环境,同时最大限度地减少 ChatGPT 的令牌限制影响。提示鼓励 ChatGPT 输出一系列预定义的机器人动作,以正式化的方式表示操作环境,并推断操作环境的更新状态。实验证实了所提出的提示可以使 ChatGPT 根据不同环境的要求进行操作,用户可以使用自然语言反馈调整 ChatGPT 的输出以实现安全和稳健的操作。所提出的提示和源代码是开源的,并可以在 https://github.com/microsoft/ChatGPT-Robot-Manipulation-Prompts 上公开获取。

0
下载
关闭预览

相关内容

ChatGPT(全名:Chat Generative Pre-trained Transformer),美国OpenAI 研发的聊天机器人程序 [1] ,于2022年11月30日发布 。ChatGPT是人工智能技术驱动的自然语言处理工具,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,真正像人类一样来聊天交流,甚至能完成撰写邮件、视频脚本、文案、翻译、代码,写论文任务。 [1] https://openai.com/blog/chatgpt/
《行为与认知机器人学》,241页pdf
专知会员服务
55+阅读 · 2021年4月11日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Do RNN and LSTM have Long Memory?
Arxiv
19+阅读 · 2020年6月10日
VIP会员
相关VIP内容
《行为与认知机器人学》,241页pdf
专知会员服务
55+阅读 · 2021年4月11日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
相关资讯
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
相关基金
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员