For extreme multi-label classification (XMC), existing classification-based models poorly perform for tail labels and often ignore the semantic relations among labels, like treating "Wikipedia" and "Wiki" as independent and separate labels. In this paper, we cast XMC as a generation task (XLGen), where we benefit from pre-trained text-to-text models. However, generating labels from the extremely large label space is challenging without any constraints or guidance. We, therefore, propose to guide label generation using label cluster information to hierarchically generate lower-level labels. We also find that frequency-based label ordering and using decoding ensemble methods are critical factors for the improvements in XLGen. XLGen with cluster guidance significantly outperforms the classification and generation baselines on tail labels, and also generally improves the overall performance in four popular XMC benchmarks. In human evaluation, we also find XLGen generates unseen but plausible labels. Our code is now available at https://github.com/alexa/xlgen-eacl-2023.


翻译:对于极端多标签分类(XMC),现有的基于分类的模型在尾标签方面表现不佳,常常忽视标签之间的语义关系,例如将“维基百科”和“维基”作为独立和独立的标签。在本文中,我们将XMC作为一个代代任务(XLGen),我们从经过预先培训的文本到文本模型中获益。然而,从极大型标签空间生成标签具有挑战性,没有任何限制或指导。因此,我们提议用标签群集信息指导标签的生成,以便按等级生成较低等级的标签。我们还发现,基于频率的标签订购和使用解码共用的方法是XLGen. XLGen的改进的关键因素,而集束指导大大超越了尾标签的分类和生成基线,并普遍改进了四种流行的XMC基准的总体性。在人类评估中,我们也发现XLGen生成了看不见但可信的标签。我们的代码现在可在https://github.com/alexa/xlgen-ecl-2023查阅。

1
下载
关闭预览

相关内容

零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
97+阅读 · 2020年5月31日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
167+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Meta-Learning to Cluster
Arxiv
18+阅读 · 2019年10月30日
VIP会员
相关VIP内容
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
97+阅读 · 2020年5月31日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
167+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员