Micro robotics is quickly emerging to be a promising technological solution to many medical treatments with focus on targeted drug delivery. They are effective when working in swarms whose individual control is mostly infeasible owing to their minute size. Controlling a number of robots with a single controller is thus important and artificial intelligence can help us perform this task successfully. In this work, we use the Reinforcement Learning (RL) algorithms Proximal Policy Optimization (PPO) and Robust Policy Optimization (RPO) to navigate a swarm of 4, 9 and 16 microswimmers under hydrodynamic effects, controlled by their orientation, towards a circular absorbing target. We look at both PPO and RPO performances with limited state information scenarios and also test their robustness for random target location and size. We use curriculum learning to improve upon the performance and demonstrate the same in learning to navigate a swarm of 25 swimmers and steering the swarm to exemplify the manoeuvring capabilities of the RL model.


翻译:暂无翻译

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
13+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年8月16日
VIP会员
相关资讯
相关基金
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
13+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员