Recent advance in score-based models incorporates the stochastic differential equation (SDE), which brings the state-of-the art performance on image generation tasks. This paper improves such score-based models by analyzing the model at the zero perturbation noise. In real datasets, the score function diverges as the perturbation noise ($\sigma$) decreases to zero, and this observation leads an argument that the score estimation fails at $\sigma=0$ with any neural network structure. Subsequently, we introduce Unbounded Noise Conditional Score Network (UNCSN) that resolves the score diverging problem with an easily applicable modification to any noise conditional score-based models. Additionally, we introduce a new type of SDE, so the exact log likelihood can be calculated from the newly suggested SDE. On top of that, the associated loss function mitigates the loss imbalance issue in a mini-batch, and we present a theoretic analysis on the proposed loss to uncover the behind mechanism of the data distribution modeling by the score-based models.


翻译:基于分数的模型最近的进展包括了Stochistic 差异方程式(SDE ), 它带来了图像生成任务的最新表现。 本文通过分析零振动噪音的模型改进了这种基于分数的模型。 在真实的数据集中, 分数函数随着扰动噪音( $\\ sigma$) 降低到零而有所不同, 而这一观察引出了一个论点, 即分数估计值在任何神经网络结构中以$\sigma=0美元为单位失败。 随后, 我们引入了无限制的噪音条件评分网络( UNCSN ), 解决分数差异问题, 对任何基于噪音的得分模型进行易于应用的修改。 此外, 我们引入了一种新的SDE 类型, 这样精确的日志可能性可以从新推荐的 SDE 中计算出来。 除此之外, 相关的损失函数减轻了一个微型批量中的损失不平衡问题, 我们对拟议的损失进行了理论分析, 以发现基于分数模型的数据分配模式背后的机制。

0
下载
关闭预览

相关内容

Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
自然语言处理(二)机器翻译 篇 (NLP: machine translation)
DeepLearning中文论坛
12+阅读 · 2015年7月1日
Arxiv
0+阅读 · 2021年8月4日
Bayesian Attention Belief Networks
Arxiv
9+阅读 · 2021年6月9日
Arxiv
10+阅读 · 2017年12月29日
Arxiv
5+阅读 · 2017年7月23日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
自然语言处理(二)机器翻译 篇 (NLP: machine translation)
DeepLearning中文论坛
12+阅读 · 2015年7月1日
Top
微信扫码咨询专知VIP会员