We investigate identifying the boundary of a domain from sample points in the domain. We introduce new estimators for the normal vector to the boundary, distance of a point to the boundary, and a test for whether a point lies within a boundary strip. The estimators can be efficiently computed and are more accurate than the ones present in the literature. We provide rigorous error estimates for the estimators. Furthermore we use the detected boundary points to solve boundary-value problems for PDE on point clouds. We prove error estimates for the Laplace and eikonal equations on point clouds. Finally we provide a range of numerical experiments illustrating the performance of our boundary estimators, applications to PDE on point clouds, and tests on image data sets.


翻译:我们从域内的采样点调查域的边界。 我们引入了正常矢量到边界的新测算器, 点点到边界的距离, 并测试某一点是否位于边界地带内。 测算器可以有效计算, 并且比文献中的测算器更准确。 我们为测算器提供严格的误差估计。 此外, 我们使用所探测到的边界点来解决点云上的 PDE 的边界值问题。 我们证明点云上的 Laplace 和 eikonal 等式的误差估计。 最后, 我们提供一系列数字实验, 说明边界测算器的性能、 对点云的 PDE 应用, 以及图像数据集的测试 。

0
下载
关闭预览

相关内容

专知会员服务
45+阅读 · 2020年12月18日
商业数据分析,39页ppt
专知会员服务
165+阅读 · 2020年6月2日
因果图,Causal Graphs,52页ppt
专知会员服务
253+阅读 · 2020年4月19日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Arxiv
0+阅读 · 2022年1月5日
Arxiv
0+阅读 · 2022年1月3日
VIP会员
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员