Causal inference is a science with multi-disciplinary evolution and applications. On the one hand, it measures effects of treatments in observational data based on experimental designs and rigorous statistical inference to draw causal statements. One of the most influential framework in quantifying causal effects is the potential outcomes framework. On the other hand, causal graphical models utilizes directed edges to represent causalities and encodes conditional independence relationships among variables in the graphs. A series of research has been done both in reading-off conditional independencies from graphs and in re-constructing causal structures. In recent years, the most state-of-art research in causal inference starts unifying the different causal inference frameworks together. This survey aims to provide a review of the past work on causal inference, focusing mainly on potential outcomes framework and causal graphical models. We hope that this survey will help accelerate the understanding of causal inference in different domains.


翻译:因果关系推断是一种具有多学科进化和应用的科学,一方面,它衡量基于实验设计和严格统计推论的观察数据的处理效果,以得出因果关系说明;在量化因果关系方面最有影响力的框架之一是潜在结果框架;另一方面,因果图形模型利用定向边缘代表因果关系,并编码图中变量之间的有条件独立关系;在从图表中读取有条件的有条件依赖性和重新构建因果结构方面进行了一系列研究;近年来,最先进的因果推断研究开始将不同的因果推断框架统一起来;这项调查旨在审查过去关于因果推断的工作,主要侧重于潜在结果框架和因果图形模型;我们希望这项调查将有助于加速理解不同领域的因果推断。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
253+阅读 · 2020年4月19日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
45+阅读 · 2022年9月19日
Arxiv
70+阅读 · 2022年6月30日
Arxiv
15+阅读 · 2020年12月17日
Arxiv
112+阅读 · 2020年2月5日
VIP会员
相关VIP内容
因果图,Causal Graphs,52页ppt
专知会员服务
253+阅读 · 2020年4月19日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关论文
Arxiv
45+阅读 · 2022年9月19日
Arxiv
70+阅读 · 2022年6月30日
Arxiv
15+阅读 · 2020年12月17日
Arxiv
112+阅读 · 2020年2月5日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员