With the continuous development of deep learning (DL), the task of multimodal dialogue emotion recognition (MDER) has recently received extensive research attention, which is also an essential branch of DL. The MDER aims to identify the emotional information contained in different modalities, e.g., text, video, and audio, in different dialogue scenes. However, existing research has focused on modeling contextual semantic information and dialogue relations between speakers while ignoring the impact of event relations on emotion. To tackle the above issues, we propose a novel Dialogue and Event Relation-Aware Graph Convolutional Neural Network for Multimodal Emotion Recognition (DER-GCN) method. It models dialogue relations between speakers and captures latent event relations information. Specifically, we construct a weighted multi-relationship graph to simultaneously capture the dependencies between speakers and event relations in a dialogue. Moreover, we also introduce a Self-Supervised Masked Graph Autoencoder (SMGAE) to improve the fusion representation ability of features and structures. Next, we design a new Multiple Information Transformer (MIT) to capture the correlation between different relations, which can provide a better fuse of the multivariate information between relations. Finally, we propose a loss optimization strategy based on contrastive learning to enhance the representation learning ability of minority class features. We conduct extensive experiments on the IEMOCAP and MELD benchmark datasets, which verify the effectiveness of the DER-GCN model. The results demonstrate that our model significantly improves both the average accuracy and the f1 value of emotion recognition.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员