Phishing remains one of the most prevalent online threats, exploiting human trust to harvest sensitive credentials. Existing URL- and HTML-based detection systems struggle against obfuscation and visual deception. This paper presents \textbf{PhishSnap}, a privacy-preserving, on-device phishing detection system leveraging perceptual hashing (pHash). Implemented as a browser extension, PhishSnap captures webpage screenshots, computes visual hashes, and compares them against legitimate templates to identify visually similar phishing attempts. A \textbf{2024 dataset of 10,000 URLs} (70\%/20\%/10\% train/validation/test) was collected from PhishTank and Netcraft. Due to security takedowns, a subset of phishing pages was unavailable, reducing dataset diversity. The system achieved \textbf{0.79 accuracy}, \textbf{0.76 precision}, and \textbf{0.78 recall}, showing that visual similarity remains a viable anti-phishing measure. The entire inference process occurs locally, ensuring user privacy and minimal latency.


翻译:钓鱼攻击仍是最普遍的在线威胁之一,其利用人类信任窃取敏感凭证。现有的基于URL和HTML的检测系统难以应对混淆和视觉欺骗。本文提出\\textbf{PhishSnap},一种利用感知哈希(pHash)的隐私保护型本地钓鱼检测系统。该系统以浏览器扩展形式实现,通过捕获网页截图、计算视觉哈希,并与合法模板比对,以识别视觉相似的钓鱼尝试。我们从PhishTank和Netcraft收集了\\textbf{2024年包含10,000个URL的数据集}(训练/验证/测试集比例为70\\%/20\\%/10\\%)。由于安全下架措施,部分钓鱼页面无法获取,降低了数据集多样性。系统实现了\\textbf{0.79准确率}、\\textbf{0.76精确率}和\\textbf{0.78召回率},表明视觉相似性仍是有效的反钓鱼手段。整个推理过程在本地完成,确保了用户隐私和最低延迟。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
22+阅读 · 2021年12月2日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员