We show the existence of universal, variable-rate rate-distortion codes that meet the distortion constraint almost surely and approach the rate-distortion function uniformly with respect to an unknown source distribution and a distortion measure that is only revealed to the encoder and only at run-time. If the convergence only needs to be uniform with respect to the source distribution and not the distortion measure, then we provide an explicit bound on the minimax rate of convergence. Our construction combines conventional random coding with a zero-rate uncoded transmission scheme. The proof uses exact asymptotics from large deviations, acceptance-rejection sampling, the VC dimension of distortion measures, and the identification of an explicit, code-independent, finite-blocklength quantity, which converges to the rate-distortion function, that controls the performance of the best codes.


翻译:我们展示了符合扭曲限制的普遍、可变利率扭曲代码的存在,这些代码几乎可以肯定地满足了扭曲限制,并且在未知源分布和扭曲措施方面统一对待率扭曲功能,这种扭曲措施只向编码器披露,而且只在运行时才披露。如果趋同只需要在源分布而不是扭曲措施方面保持统一,那么我们就会对微缩汇合率作出明确的约束。我们的构造将常规随机编码与零率的未编码传输计划结合起来。 证据使用了从大偏差、接受-拒绝抽样、扭曲措施的VC层面以及确定一个明确、不受编码约束、有限区长数量(这与率扭曲功能一致)来控制最佳代码的性能。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
76+阅读 · 2022年6月28日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
76+阅读 · 2022年6月28日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
相关基金
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员