RISC-V architectures have gained importance in the last years due to their flexibility and open-source Instruction Set Architecture (ISA), allowing developers to efficiently adopt RISC-V processors in several domains with a reduced cost. For application domains, such as safety-critical and mission-critical, the execution must be reliable as a fault can compromise the system's ability to operate correctly. However, the application's error rate on RISC-V processors is not significantly evaluated, as it has been done for standard x86 processors. In this work, we investigate the error rate of a commercial RISC-V ASIC platform, the GAP8, exposed to a neutron beam. We show that for computing-intensive applications, such as classification Convolutional Neural Networks (CNN), the error rate can be 3.2x higher than the average error rate. Additionally, we find that the majority (96.12%) of the errors on the CNN do not generate misclassifications. Finally, we also evaluate the events that cause application interruption on GAP8 and show that the major source of incorrect interruptions is application hangs (i.g., due to an infinite loop or a racing condition).


翻译:在过去几年里,RISC-V处理器的错误率因其灵活性和开放源码指令设置架构(ISA)而变得日益重要,使开发者能够以降低成本的方式在多个领域高效采用RISC-V处理器。对于安全关键和任务关键等应用领域,执行必须可靠,因为故障会损害系统正确运行的能力。然而,RISC-V处理器的错误率没有像标准程序x86那样得到重大评价。在这项工作中,我们调查了商业的RISC-V ACIC ACIC平台(GAP8)的错误率,该平台暴露在中子波束中。我们显示,对于计算机密集型应用,如Colultual Neural网络(CNN),错误率可能比平均错误率高3.2x。此外,我们发现CNN错误的多数(96.12%)并没有产生错误分类。最后,我们还评估了造成GAP8应用中断的事件,并表明错误中断的主要源是应用悬浮(i.g.),因为是一个不动的状态。

0
下载
关闭预览

相关内容

指分类错误的样本数占样本总数的比例。
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关资讯
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员