Although scaling laws and many empirical results suggest that increasing the size of Vision Transformers often improves performance, model accuracy and training behavior are not always monotonically increasing with scale. Focusing on ViT-B/16 trained on ImageNet-1K, we study two simple parameter-reduction strategies applied to the MLP blocks, each removing 32.7\% of the baseline parameters. Our \emph{GroupedMLP} variant shares MLP weights between adjacent transformer blocks and achieves 81.47\% top-1 accuracy while maintaining the baseline computational cost. Our \emph{ShallowMLP} variant halves the MLP hidden dimension and reaches 81.25\% top-1 accuracy with a 38\% increase in inference throughput. Both models outperform the 86.6M-parameter baseline (81.05\%) and exhibit substantially improved training stability, reducing peak-to-final accuracy degradation from 0.47\% to the range 0.03\% to 0.06\%. These results suggest that, for ViT-B/16 on ImageNet-1K with a standard training recipe, the model operates in an overparameterized regime in which MLP capacity can be reduced without harming performance and can even slightly improve it. More broadly, our findings suggest that architectural constraints such as parameter sharing and reduced width may act as useful inductive biases, and highlight the importance of how parameters are allocated when designing Vision Transformers. All code is available at: https://github.com/AnanthaPadmanaban-KrishnaKumar/parameter-efficient-vit-mlps.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员