Minimum spanning trees are important tools in the analysis and design of networks. Many practical applications require their computation, ranging from biology and linguistics to economy and telecommunications. The set of cycles of a network has a vector space structure. Given a spanning tree, the set of non-tree edges defines cycles that determine a basis. The intersection of two such cycles is the number of edges they have in common and the intersection number -- denoted $\cap(G)$ -- is the number of non-empty pairwise intersections of the cycles of the basis. The Minimum Spanning Tree Cycle Intersection problem consists in finding a spanning tree such that the intersection number is minimum. This problem is relevant in order to integrate discrete differential forms. In this paper, we present two lower bounds of the intersection number of an arbitrary connected graph $G=(V,E)$. In the first part, we prove the following statement: $$\frac{1}{2}\left(\frac{\nu^2}{n-1} - \nu\right) \leq \cap(G),$$ where $n = |V|$ and $\nu$ is the \emph{cyclomatic number} of $G$. In the second part, based on some experimental results and a new observation, we conjecture the following improved tight lower bound: $$(n-1) \binom{q}{2} + q \ r\leq \cap(G),$$ where $2 \nu = q (n-1) + r$ is the integer division of $2 \nu$ and $n-1$. This is the first result in a general context, that is for an arbitrary connected graph.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员