Previous research has reported that large language models (LLMs) demonstrate poor performance on the Chartered Financial Analyst (CFA) exams. However, recent reasoning models have achieved strong results on graduate-level academic and professional examinations across various disciplines. In this paper, we evaluate state-of-the-art reasoning models on a set of mock CFA exams consisting of 980 questions across three Level I exams, two Level II exams, and three Level III exams. Using the same pass/fail criteria from prior studies, we find that most models clear all three levels. The models that pass, ordered by overall performance, are Gemini 3.0 Pro, Gemini 2.5 Pro, GPT-5, Grok 4, Claude Opus 4.1, and DeepSeek-V3.1. Specifically, Gemini 3.0 Pro achieves a record score of 97.6% on Level I. Performance is also strong on Level II, led by GPT-5 at 94.3%. On Level III, Gemini 2.5 Pro attains the highest score with 86.4% on multiple-choice questions while Gemini 3.0 Pro achieves 92.0% on constructed-response questions.


翻译:先前的研究表明,大型语言模型(LLMs)在特许金融分析师(CFA)考试中表现不佳。然而,近期的推理模型已在多个学科的研究生级别学术和专业考试中取得了优异成绩。本文评估了最先进的推理模型在一套模拟CFA考试上的表现,该套考试包含三个一级考试、两个二级考试和三个三级考试,共计980道题目。采用与先前研究相同的通过/未通过标准,我们发现大多数模型均通过了所有三个级别。按总体表现排序,通过的模型依次为:Gemini 3.0 Pro、Gemini 2.5 Pro、GPT-5、Grok 4、Claude Opus 4.1和DeepSeek-V3.1。具体而言,Gemini 3.0 Pro在一级考试中创下了97.6%的纪录分数。在二级考试中,模型表现同样强劲,GPT-5以94.3%的分数领先。在三级考试中,Gemini 2.5 Pro在多项选择题上获得最高分86.4%,而Gemini 3.0 Pro在建构反应题上取得了92.0%的分数。

0
下载
关闭预览

相关内容

2023年12 月 6 日,谷歌 CEO 桑达尔・皮查伊官宣 Gemini 1.0 版正式上线。这次发布的 Gemini 大模型是原生多模态大模型,是谷歌大模型新时代的第一步,它包括三种量级:能力最强的 Gemini Ultra,适用于多任务的 Gemini Pro 以及适用于特定任务和端侧的 Gemini Nano。
DeepSeek模型综述:V1 V2 V3 R1-Zero
专知会员服务
116+阅读 · 2月11日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
论文浅尝 | Interaction Embeddings for Prediction and Explanation
开放知识图谱
11+阅读 · 2019年2月1日
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
读论文Discriminative Deep Metric Learning for Face and KV
统计学习与视觉计算组
12+阅读 · 2018年4月6日
Mask R-CNN 论文笔记
统计学习与视觉计算组
11+阅读 · 2018年3月22日
国家自然科学基金
8+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
VIP会员
相关资讯
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
论文浅尝 | Interaction Embeddings for Prediction and Explanation
开放知识图谱
11+阅读 · 2019年2月1日
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
读论文Discriminative Deep Metric Learning for Face and KV
统计学习与视觉计算组
12+阅读 · 2018年4月6日
Mask R-CNN 论文笔记
统计学习与视觉计算组
11+阅读 · 2018年3月22日
相关基金
国家自然科学基金
8+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员