In this paper, we propose a neural architecture search framework based on a similarity measure between some baseline tasks and a target task. We first define the notion of the task similarity based on the log-determinant of the Fisher Information matrix. Next, we compute the task similarity from each of the baseline tasks to the target task. By utilizing the relation between a target and a set of learned baseline tasks, the search space of architectures for the target task can be significantly reduced, making the discovery of the best candidates in the set of possible architectures tractable and efficient, in terms of GPU days. This method eliminates the requirement for training the networks from scratch for a given target task as well as introducing the bias in the initialization of the search space from the human domain.


翻译:在本文中,我们提出一个神经结构搜索框架,其依据是某些基线任务和目标任务之间的类似度度;我们首先根据渔业信息矩阵的对称定义界定任务相似性的概念;接下来,我们根据每个基线任务与目标任务之间的相似性来计算任务;通过利用目标与一组已学习的基线任务之间的关系,可以大大减少目标任务结构的搜索空间,使在一组可移动和高效的可能的架构中找到最佳候选人,即GPU日;这种方法消除了从零到零培训网络完成特定目标任务的要求,并引入了从人类领域开始搜索空间的偏差。

0
下载
关闭预览

相关内容

Automator是苹果公司为他们的Mac OS X系统开发的一款软件。 只要通过点击拖拽鼠标等操作就可以将一系列动作组合成一个工作流,从而帮助你自动的(可重复的)完成一些复杂的工作。Automator还能横跨很多不同种类的程序,包括:查找器、Safari网络浏览器、iCal、地址簿或者其他的一些程序。它还能和一些第三方的程序一起工作,如微软的Office、Adobe公司的Photoshop或者Pixelmator等。
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
167+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
3+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
126+阅读 · 2020年9月6日
Learning from Few Samples: A Survey
Arxiv
77+阅读 · 2020年7月30日
Few-shot Learning: A Survey
Arxiv
363+阅读 · 2019年4月10日
Arxiv
19+阅读 · 2018年3月28日
Arxiv
10+阅读 · 2017年12月29日
VIP会员
相关资讯
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关论文
Arxiv
126+阅读 · 2020年9月6日
Learning from Few Samples: A Survey
Arxiv
77+阅读 · 2020年7月30日
Few-shot Learning: A Survey
Arxiv
363+阅读 · 2019年4月10日
Arxiv
19+阅读 · 2018年3月28日
Arxiv
10+阅读 · 2017年12月29日
相关基金
国家自然科学基金
3+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员