Vizing's theorem asserts the existence of a {$(\Delta+1)$-edge coloring} for any graph $G$, where $\Delta = \Delta(G)$ denotes the maximum degree of $G$. Several polynomial time $(\Delta+1)$-edge coloring algorithms are known, and the state-of-the-art running time (up to polylogarithmic factors) is $\tilde{O}(\min\{m \cdot \sqrt{n}, m \cdot \Delta\})$, by Gabow et al.\ from 1985, where $n$ and $m$ denote the number of vertices and edges in the graph, respectively. (The $\tilde{O}$ notation suppresses polylogarithmic factors.) Recently, Sinnamon shaved off a polylogarithmic factor from the time bound of Gabow et al. The {arboricity} $\alpha = \alpha(G)$ of a graph $G$ is the minimum number of edge-disjoint forests into which its edge set can be partitioned, and it is a measure of the graph's ``uniform density''. While $\alpha \le \Delta$ in any graph, many natural and real-world graphs exhibit a significant separation between $\alpha$ and $\Delta$. In this work we design a $(\Delta+1)$-edge coloring algorithm with a running time of $\tilde{O}(\min\{m \cdot \sqrt{n}, m \cdot \Delta\})\cdot \frac{\alpha}{\Delta}$, thus improving the longstanding time barrier by a factor of $\frac{\alpha}{\Delta}$. In particular, we achieve a near-linear runtime for bounded arboricity graphs (i.e., $\alpha = \tilde{O}(1)$) as well as when $\alpha = \tilde{O}(\frac{\Delta}{\sqrt{n}})$. Our algorithm builds on Sinnamon's algorithm, and can be viewed as a density-sensitive refinement of it.


翻译:暂无翻译

0
下载
关闭预览

相关内容

专知会员服务
33+阅读 · 2021年3月7日
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
可解释AI(XAI)工具集—DrWhy
专知
25+阅读 · 2019年6月4日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年8月23日
VIP会员
相关资讯
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
可解释AI(XAI)工具集—DrWhy
专知
25+阅读 · 2019年6月4日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员