Best Arm Identification (BAI) algorithms are deployed in data-sensitive applications, such as adaptive clinical trials or user studies. Driven by the privacy concerns of these applications, we study the problem of fixed-confidence BAI under global Differential Privacy (DP) for Bernoulli distributions. While numerous asymptotically optimal BAI algorithms exist in the non-private setting, a significant gap remains between the best lower and upper bounds in the global DP setting. This work reduces this gap to a small multiplicative constant, for any privacy budget $\epsilon$. First, we provide a tighter lower bound on the expected sample complexity of any $\delta$-correct and $\epsilon$-global DP strategy. Our lower bound replaces the Kullback-Leibler (KL) divergence in the transportation cost used by the non-private characteristic time with a new information-theoretic quantity that optimally trades off between the KL divergence and the Total Variation distance scaled by $\epsilon$. Second, we introduce a stopping rule based on these transportation costs and a private estimator of the means computed using an arm-dependent geometric batching. En route to proving the correctness of our stopping rule, we derive concentration results of independent interest for the Laplace distribution and for the sum of Bernoulli and Laplace distributions. Third, we propose a Top Two sampling rule based on these transportation costs. For any budget $\epsilon$, we show an asymptotic upper bound on its expected sample complexity that matches our lower bound to a multiplicative constant smaller than $8$. Our algorithm outperforms existing $\delta$-correct and $\epsilon$-global DP BAI algorithms for different values of $\epsilon$.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
12+阅读 · 2022年11月21日
Arxiv
17+阅读 · 2019年3月28日
Arxiv
12+阅读 · 2019年2月26日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
12+阅读 · 2022年11月21日
Arxiv
17+阅读 · 2019年3月28日
Arxiv
12+阅读 · 2019年2月26日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员