Simulation-based testing of automated driving systems (ADS) is the industry standard, being a controlled, safe, and cost-effective alternative to real-world testing. Despite these advantages, virtual simulations often fail to accurately replicate real-world conditions like image fidelity, texture representation, and environmental accuracy. This can lead to significant differences in ADS behavior between simulated and real-world domains, a phenomenon known as the sim2real gap. Researchers have used Image-to-Image (I2I) neural translation to mitigate the sim2real gap, enhancing the realism of simulated environments by transforming synthetic data into more authentic representations of real-world conditions. However, while promising, these techniques may potentially introduce artifacts, distortions, or inconsistencies in the generated data that can affect the effectiveness of ADS testing. In our empirical study, we investigated how the quality of image-to-image (I2I) techniques influences the mitigation of the sim2real gap, using a set of established metrics from the literature. We evaluated two popular generative I2I architectures, pix2pix, and CycleGAN, across two ADS perception tasks at a model level, namely vehicle detection and end-to-end lane keeping, using paired simulated and real-world datasets. Our findings reveal that the effectiveness of I2I architectures varies across different ADS tasks, and existing evaluation metrics do not consistently align with the ADS behavior. Thus, we conducted task-specific fine-tuning of perception metrics, which yielded a stronger correlation. Our findings indicate that a perception metric that incorporates semantic elements, tailored to each task, can facilitate selecting the most appropriate I2I technique for a reliable assessment of the sim2real gap mitigation.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员