This paper considers the problem of finding maximum volume (axis-aligned) inscribed boxes in a compact convex set, defined by a finite number of convex inequalities, and presents optimization and geometric approaches for solving them. Several optimization models are developed that can be easily generalized to find other inscribed geometric shapes such as triangles, rhombi, and squares. To find the largest axis-aligned inscribed rectangles in the higher dimensions, an interior-point method algorithm is presented and analyzed. For 2-dimensional space, a parametrized optimization approach is developed to find the largest (axis-aligned) inscribed rectangles in convex sets. The optimization approach provides a uniform framework for solving a wide variety of relevant problems. Finally, two computational geometric $(1-\varepsilon)$--approximation algorithms with sub-linear running times are presented that improve the previous results.


翻译:本文考虑了在一个紧凑的锥形组中找到最大体积(轴对齐)的刻录框的问题,该组以数量有限的锥形不平等为定义,并展示了解决这些问题的优化和几何方法。开发了几种最优化模型,这些模型可以很容易地通用,以找到其他刻录的几何形状,如三角形、正方形和正方形。要找到在较高维度中最大轴对齐的刻录矩形,就提出并分析一个内部点法算法。对于二维空间,正在开发一种对称优化法,以找到在锥形组中刻录的最大矩形(轴对齐)的矩形组。优化法提供了一个解决广泛相关问题的统一框架。最后,提出了两种具有亚线性运行时间的计算几何 $( \ varepsilon)$- Apporomation 算法,从而改进了先前的结果。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年10月4日
Arxiv
0+阅读 · 2022年10月3日
Arxiv
0+阅读 · 2022年9月30日
VIP会员
相关VIP内容
专知会员服务
51+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
相关资讯
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关论文
Arxiv
0+阅读 · 2022年10月4日
Arxiv
0+阅读 · 2022年10月3日
Arxiv
0+阅读 · 2022年9月30日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员