We introduce a multiple target optimization framework for DP-SGD referred to as pro-active DP. In contrast to traditional DP accountants, which are used to track the expenditure of privacy budgets, the pro-active DP scheme allows one to {\it a-priori} select parameters of DP-SGD based on a fixed privacy budget (in terms of $\epsilon$ and $\delta$) in such a way to optimize the anticipated utility (test accuracy) the most. To achieve this objective, we first propose significant improvements to the moment account method, presenting a closed-form $(\epsilon,\delta)$-DP guarantee that connects all parameters in the DP-SGD setup. Generally, DP-SGD is $(\epsilon\leq 1/2,\delta=1/N)$-DP if $\sigma=\sqrt{2(\epsilon +\ln(1/\delta))/\epsilon}$ with $T$ at least $\approx 2k^2/\epsilon$ and $(2/e)^2k^2-1/2\geq \ln(N)$, where $T$ is the total number of rounds, and $K=kN$ is the total number of gradient computations where $k$ measures $K$ in number of epochs of size $N$ of the local data set. We prove that our expression is close to tight in that if $T$ is more than a constant factor $\approx 4$ smaller than the lower bound $\approx 2k^2/\epsilon$, then the $(\epsilon,\delta)$-DP guarantee is violated. Our enhanced DP theory allows us to create a utility graph and DP calculator. These tools link privacy and utility objectives and search for optimal experiment setups, efficiently taking into account both accuracy and privacy objectives, as well as implementation goals. We furnish a comprehensive implementation flow of our proactive DP, with rigorous experiments to showcase the proof-of-concept.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
AQuA: A Benchmarking Tool for Label Quality Assessment
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员