The potential of Wi-Fi backscatter communications systems is immense, yet challenges such as signal instability and energy constraints impose performance limits. This paper introduces FlexScatter, a Wi-Fi backscatter system using a designed scheduling strategy based on excitation prediction and rateless coding to enhance system performance. Initially, a Wi-Fi traffic prediction model is constructed by analyzing the variability of the excitation source. Then, an adaptive transmission scheduling algorithm is proposed to address the low energy consumption demands of backscatter tags, adjusting the transmission strategy according to predictive analytics and taming channel conditions. Furthermore, leveraging the benefits of low-density parity-check (LDPC) and fountain codes, a novel coding and decoding algorithm is developed, which is tailored for dynamic channel conditions. Experimental validation shows that FlexScatter reduces bit error rates (BER) by up to 30%, improves energy efficiency by 7%, and increases overall system utility by 11%, compared to conventional methods. FlexScatter's ability to balance energy consumption and communication efficiency makes it a robust solution for future IoT applications that rely on unpredictable Wi-Fi traffic.


翻译:暂无翻译

1
下载
关闭预览

相关内容

Wi-Fi 是 Wi-Fi 联盟制造商的商标可做为产品的品牌认证,是一个创建于 IEEE 802.11 标准的无线局域网络(WLAN)设备。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员